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lons (at High Concentration) in Solution

Electrochemistry

« Water-in-salt battery electrolytes
Suo et al., Science, 2015, 350, 938.

 Thermoelectrics
Lazar et al., Phys. Chem. Chem. Phys., 2016, 18, 1404.

» lons under confinement, e.g. supercapacitors
Smith et al., J. Phys. Chem. Lett., 2016, 7, 2157.

“BiO”
« Dead Sea (~4.7 M)

« Hofmeister series for biology
Lo Nostro et al., Chem. Rev., 2012, 112, 2286.

« Hydrated ionic liquids for biocatalysis etc.
Schroder, Top. Curr. Chem., 2017, 375, 25.

* Solutions for biomass deconstruction
Brandt et al., Green Chem., 2015, 17, 5019.

lonic liquid properties

« Impurities in ionic liquids
Seddon et al., Pure Appl. Chem., 2000, 72, 2275.




Question to Answer:
How Does lon Solvation Affect lon Reactivity?
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MacFarlane et al.,
Faraday Discuss.,

[Comim][EtOSO5]+H,0 2018, 206, 9.
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Fig. 1 Molar conductivity trends in water—[Comim][EtOSO<]** and dichloromethane—

[Camim][BF4]1*>*¢ mixtures.

lons in molecular liquids

lons in ions
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Solutes in Liquids:
Relating Electronic Structure and Reactivity

Nobel Prize for Chemistry 1981
“In the electronic theory, the static and dynamic behavior of
molecules are explained by the electronic effects which are
based solely on the distribution of electrons in a molecule.”

“reactivity of molecules is explained by electron location”

https://www.nobelprize.org/prizes/chemistry/1981/fukui/lecture/
https://www.nobelprize.ora/prizes/chemistry/1981/fukui/auto-biography/



https://www.nobelprize.org/prizes/chemistry/1981/fukui/auto-biography/
https://www.nobelprize.org/prizes/chemistry/1981/fukui/auto-biography/
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Probing Electronic Structure: X-ray Spectroscopy
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Probing Unoccupied MOs:

Traditionally... NEXAFS

2 steps:
1. X-ray absorption leaves core-hole

2. Electron dynamics fills core hole
» Electron detection
» Photon detection
» (Transmission)
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Core-Hole Clock: Interfaces and Polymers

Experimental evidence for sub-3-fs
charge transfer from an aromatic
adsorbate to a semiconductor *  Soft X-rays

) « Monolayer on single crystal
Joachim Schnadt*, Paul A. Bruhwiler*, Luc Pattheyt, James N. 0’Shea*, . ..
Sven Sodergren*, Michael Odelius:, Rajeev Ahuja*, Olof Karis*, * Monitor partlc:lpator Auger
Margit Basslers, Petter Persson*, Hans Sieghahn*, S. Lunell*
& Nils Martenssons*

Schnadt et al., Nature, 2002, 418, 620.

Anisotropic attosecond charge carrier dynamics
and layer decoupling in quasi-2D layered SnS * Soft X-rays
2 « Single crystal

Calley N. Eads!, Dmytro Bandak!, Mahesh R. Neupanez, Dennis Nordlund® 3 & Oliver L.A. Monti"4 . MOﬂitOI‘ SpeCtatOI’ Augel‘
Eads et al., Nat. Commun., 2017, 8, 7.

Femtosecond Electron Delocalization in Poly(thiophene) Probed by * Tender X-rays
Resonant Auger Spectroscopy * Polymer
C. Arantes,”® B. G. A. L. E‘»orges,Jr B. Beck,” G. Arau'ljo,Jf L. S. Roman,” and M. L. M. Rocco™" e Monitor

Arantes et al., J. Phys. Chem. C, 2013, 117, 8208. spectator Auger



Core-Hole Clock: 2 Competing Processes

2 competing electron processes to fill core-hole important here:
* Resonant normal Auger
* (Resonant) spectator Auger
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(Non-resonant) Normal Auger
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Step 1

Core-Hole Clock
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ion A

Step 2 Opt

Core-Hole Clock

Same process as normal Auger apart from...

Spectator Auger transition

Step 2, Option A
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Core-Hole Clock: Step 2 Option B

Step 2, Option B
* Resonant normal Auger transition
« Part (i) Electron transfer; electron no longer
screens S 1s core-hole
« Part (i) = same process as normal Auger
. 1s'4p —» S 1s1 — S 2p~2
« S atom final state: +2
* Ey = constant
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Normal and Spectator Augers at Different E,?

Normal Auger
and resonant Spectator
normal Auger Auger

final state final state * Screening of core-hole
S2p?=+2 || S2p?4p=+1

. 4 . 4
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Results: Electron Transfer Times

ompetition between two processes:
 resonant normal Auger transition
* Spectator Auger transition
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Menzel, Chem. Soc. Rev., 2008, 37, 2212.
Fohlisch et al., Chem. Phys. Lett., 2007, 434, 214.



Results: Electron Transfer Times

area of spectator

Auger peaks
electron transfer time S 1s core-hole lifetime = 1 fs
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Electron Spectroscopy of Liquids:
Apparatus

20



CHALLENGE

~ —9
electron 107" mbar

detector

electrons

pump
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X-ray Spectroscopy of Liquids: How?

Method | Apparatus Samples

1 Very rare lons in (some) molecular liquids

2 Common lons in ions




Method 1: lons in (some) Molecular Liquids

Liquid Microjet Apparatus

~10~° mbar

electrons
detector

[electrons

liquid jet ¢ _

MAX TV

LABORATORY

Soft X-rays

@ESSY

Soft X-rays

SOLEIL

SYNCHROTRON

Tender X-rays

Pump
for liquid
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Method 2: lons In lons

Static Liquid Drop in UHV

~10-° mbar
electron

detector

electrons

MAXTV diamond

LABORATORY
Soft, tender and
Soft X-rays hard X-rays

Fogarty et al., Phys. Chem. Chem. Phys., 2017, 19, 31156.
Fogarty et al., J. Chem. Phys., 2018, 148, 193817.
Fogarty et al., Faraday Discuss., 2018, 206, 183.
Fogarty et al., Phys. Chem. Chem. Phys., 2019, 21, 18893.
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Results



Samples Studied: 8 Different Solutions
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Results: Partial Electron Yield NEXAFS
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« Very little difference between solvation in ions and solvation in water



Results: CHC Peak Identification
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Results: CHC Peak Identification
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Results: CHC Peak Identification
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Results: CHC Peak Identification
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Photon Energy / eV
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Results: CHC Peak E, .. f T o
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Results: Femtosecond Electron Transfer
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Summary and Conclusions

« X-ray spectroscopy of ions in solution

« Succesfuly investigated electronic structure of ions in solution across whole
concentration range

 NEXAFS not greatly affected by solvation environment
« Solvation environment affects E, of normal vs spectator Auger
* Observed femtosecond e transfer

* Future challenges

 Fit all of our current CHC data
« Quantify e transfer timescales

* Apply methods to (more) solutes in (more) molecular liquids
(e.g. ethanol, propylene carbonate, acetonitrile)

 Identify all peaks/features in CHC spectra - calculations
* Are there any methods than can cope with these sizes of ions?

 How many solvent molecules/ions needed?
(Fogarty et al., Phys. Chem. Chem. Phys., 2017, 19, 31156.)
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lonic Liquids: Vapour Pressure

AyapH / kI molt
Cu, Ag, Au 250 — 340
lonic liquids 130 — 200
Alkali metals 70 —» 150
Molecular liquids 25 — 100
Halogens 3> 27
Nobel gases 0.08 —» 16

K. R. J. Lovelock, Ph.D. Thesis, 2008.

10 mbar §
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“Organic” Reactivity

A+ :B= AB

Orbital Control
small AE

Where the

LUMO electrons can go

Where the

electrons start HOMO

AE
A

Fleming, Molecular Orbitals and Organic Chemical Reactions, Wiley, 2010.
Fukui, Angew. Chem.-Int. Edit. Engl., 1982, 21, 801.
Hoffmann, Angew. Chem.-Int. Edit. Engl., 1982, 21, 711. 40



Photon Energy / eV

Results: Peak Identification
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2474

2472

2476
2474

2472

Results: Solvent Screening of Core-Hole

o =

2104 2108 2112
Kinetic Energy, Ex / eV

2104 2108 2112
Kinetic Energy, Ex / eV

[C,C,Im][SCN]
l.e. x =1.00

Shifts of 2 large spectator peaks
Relative to normal Auger peak
Both ~1.0 eV

([C4C1IM][SCN])g 0025(H20)g 9975
l.e. x = 0.0025
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Results: Peak Identification

[C,C,Im][SCN] ([C4C1IM][SCN])g 0025(H20)g 9975
l.e. x=1.00 l.e. x = 0.0025

3 clear spectator peaks

2104 2108 2112 2104 2108 2112
Kinetic Energy, Ex / eV Kinetic Energy, Ex / eV
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Results: Electron Transfer Times
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Core Orbital XPS
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Core Orbital XPS
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Larger x (more IL) = smaller Eg(anion)

Larger x (more IL) = Ngion
(more valence electrons near N

more -ve

anion TOr larger x)

Same trend observed for [C,C,Im][A] ILs:
[A] = CI, I, [TfO], [HSO,], [BF,]
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Galaxies Liquid Jet




109 Static Liquid Sample
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